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Introduction to image registration (1)

Affine registration

T (x) = x + U(x) =

[

1 + a1 a3

a2 1 + a4

] [

x1

x2

]

+

[

a5

a6

]

Solve: argmin
a1,...,a6

∑

x

(I(x)− J(x + U(x)))2 where U = [Ux Uy ]
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T (x) =?

Target (I)Source (J)



Introduction to image registration (2)

Affine registration

U(x) :=

[

0.076 0.064
−0.106 0.390

] [

x1

x2

]

+

[

−0.836
45.970

]
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Target (I)Registered



Introduction to image registration (3)

Non-rigid registration

T (x) = x + U(x) U : Ω→ R
2

Edata[U] =

∫

Ω

(I(x)− J(x + U(x)))2 dx

U∗ = argmin Edata[U]
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T (x) =?

Target (I)Source (J)

Variational minimization of Edata by gradient descent

• Calculus of variations gives the variational derivative of Edata as:

δEdata

δU
= 2[J(x + U(x)) − I(x)][∇J(x)|x+U(x)]

Define u(x) = −2 ǫ [J(x + U(x)) − I(x)][∇J(x)|x+U(x)] as the update field
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(resampled gradient) with ∇J(x + U(x))(gradient of resampled image)
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T (x) =?

Target (I)Source (J)

Variational minimization of Edata by gradient descent

• Calculus of variations gives the variational derivative of Edata as:

δEdata

δU
= 2[J(x + U(x)) − I(x)][∇J(x)|x+U(x)]

Define u(x) = −2 ǫ [J(x + U(x)) − I(x)][∇J(x)|x+U(x)] as the update field

• Compositive update rule [Stefanescu et al., 2004]: Replace ∇J(x)|x+U(x)

(resampled gradient) with ∇J(x + U(x))(gradient of resampled image)

• Gradient descent scheme to minimize Edata:

uk(x) = −2 ǫ [J(x + Uk(x)) − I(x)][∇J(x + Uk(x))]

Uk+1(x) = Uk(x + uk (x)) + uk(x)



Introduction to image registration (4)

Non-rigid registration

• Ill-posed minimization problem, the estimated displacement field U∗(x)
moves each pixel independently !

• More constraints need to be added during the minimization of Edata[U]

Karteek Popuri (University of Alberta) Fast FEM-based Non-Rigid Registration CRV 2010 presentation 6 / 17

Target (I)FAILSource (J)



Diffusion-based non-rigid image registration (1)

Non-rigid registration with smoothing

• Enforce the smoothness constraint, i.e., smooth the update field uk(x) and
displacement field Uk(x) at each step k [Stefanescu et al., 2004]. This can
be achieved by minimizing:

Esmooth[v
k
l ] =

∫

Ω

(vk
l − v∗kl )2+αΨ(

∣

∣

∣

∣∇vk
l

∣

∣

∣

∣

2
)dx

∀ l ∈ {x , y} ∀ v ∈ {Ux ,Uy , ux , uy}
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Target (I)RegisteredSource (J)



Diffusion-based non-rigid image registration (2)

Minimization of smoothing energy Esmooth

vα = argmin Esmooth[v ] = argmin

∫

Ω

(v − v∗)2 + αΨ(||∇v ||
2
)dx

where vα is the smoothed displacement (update) field

Setting the variational derivative of Esmooth equal to zero we get the elliptic
version of the diffusion Partial Differential Equation (PDE):

δEsmooth

δv
= 2[v − v∗ − α div(Ψ

′

(||∇v ||
2
)∇v)] = 0

Alternatively, using variational calculus we can also set the integral extremum

condition to zero:

L(v , h) =

∫

Ω

[

(v − v∗)h + αΨ
′

(||∇u||
2
)∇v .∇h

]

dx = 0 ∀h ∈ D1(Ω)
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Diffusion-based non-rigid image registration (3)

Numerical methods for minimization of Esmooth

Finite differences to solve the diffusion

equation [Stefanescu et al., 2004]:

• Consider an UNIFORM discretization of
a L×W grid:

Finite Element Method to solve the
integral equation [Popuri et al., 2010]:

• Consider a NON-UNIFORM
discretization of the L×W grid:
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Uniform vs Non-Uniform grids

Template Uniform grid Non-Uniform grid

• Uniform discretization: fixed spacing of 1 pixel, total of L×W points

• Non-uniform discretization: less nodes in homogeneous regions and
more nodes in regions with features, total nodes M << L×W



Diffusion-based non-rigid image registration (3)

Numerical methods for minimization of Esmooth

Finite differences to solve the diffusion

equation [Stefanescu et al., 2004]:

• Consider an UNIFORM discretization of
a L×W grid:

vĳ − v∗
ĳ
− α [div(Ψ

′
(||∇v ||2)∇v ]ĳ = 0

Discretize [div(.)]ĳ , use a semi-implicit
AOS scheme [Weickert et al., 1998] and
re-arrange:

v = 1
2

∑

l∈{x,y}

(Id − 2α(Al ))
−1v∗

where v = {v11, v12, . . . , vLW }, Al is a
matrix of constant coefficients

Finite Element Method to solve the
integral equation [Popuri et al., 2010]:

• Consider a NON-UNIFORM
discretization of the L×W grid:

Approximate v =
N
∑

n=1

v(Pn)φn and

choosing h = φm we get

N
∑

n=1

(v(Pn) − v∗(Pn))
∫

Ω
φnφm dx +

α
N
∑

n=1

∫

Ω
Ψ
′
(.)∇φn.∇φm dx =

0 m, n = {1, 2, . . . ,N}
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The penalizer

Ψ
′
(.) =

{

D(x) displacement field

1− k(x) update field

is constant

• D(x) is the scalar inhomogeneous
stiffness field

• k(x) = exp

(

−c
(

‖∇J‖
λ

)

)

is the confidence

field computed on the source image J

• Further, for the update field smoothing is
performed on v̂ = v

1−k(x)
instead of v
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The integral condition
∫

Ω

[

(v−v∗)h+αΨ
′
(||∇u||2)∇v .∇h

]

dx = 0

∀h ∈ D1(Ω)

The nodal basis functions

P
n

P
(5)
n

P
(1)
n

P
(2)
n

P
(3)
n

P
(4)
n

xij

φn(x) =







is linear within each triangle δĳ
1 at each node Pn

0 at every other node Pm 6= Pn
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Precomputation of the integrals

• The integrals
∫

Ω
φnφm,

∫

Ω
∇φn∇φm

are precomputed analytically

The nodal basis functions

P
n

P
(5)
n

P
(1)
n

P
(2)
n

P
(3)
n

P
(4)
n

xij

φn(x) =







is linear within each triangle δĳ
1 at each node Pn

0 at every other node Pm 6= Pn



Diffusion-based non-rigid image registration (3)

Numerical methods for minimization of Esmooth

Finite differences to solve the diffusion

equation [Stefanescu et al., 2004]:

• Consider an UNIFORM discretization of
a L×W grid:

vĳ − v∗
ĳ
− α [div(Ψ

′
(||∇v ||2)∇v ]ĳ = 0

Discretize [div(.)]ĳ , use a semi-implicit
AOS scheme [Weickert et al., 1998] and
re-arrange:

v = 1
2

∑

l∈{x,y}

(Id − 2α(Al ))
−1v∗

where v = {v11, v12, . . . , vLW }, Al is a
matrix of constant coefficients

• We have to solve a system of L×W

linear equations

Finite Element Method to solve the
integral equation [Popuri et al., 2010]:

• Consider a NON-UNIFORM
discretization of the L×W grid:

Approximate v =
N
∑

n=1

v(Pn)φn and

choosing h = φm we get

N
∑

n=1

(v(Pn) − v∗(Pn))
∫

Ω
φnφm dx +

α
N
∑

n=1

∫

Ω
Ψ
′
(.)∇φn.∇φm dx =

0 m, n = {1, 2, . . . ,N}

• We have to solve a system of
N << L×W linear equations. Hence,

our proposed method is much faster !
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Proposed FEM-based Non-Rigid Registration (1)

“Implicit” update field smoothing

P
n

P
(5)
n

P
(1)
n

P
(2)
n

P
(3)
n

P
(4)
n

xij

• Updates are computed at the nodes
u(Pn) by taking a weighted average of
the updates at the neighboring pixels uĳ :

uk(Pn) =
1
∑

ĳ
λĳ

∑

ĳ

λĳ uk
ĳ

where λĳ represents the barycentric
coordinate of the pixel xĳ with respect
to the node Pn

• Thus, we do NOT need to perform the
more expensive diffusion based
smoothing of the update field
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Proposed FEM-based Non-Rigid Registration (2)

Non-Uniform grid generation

Feature image
Input image

Final Mesh Halftoned image

• Given an input 2D image f (x , y)
compute the feature map:

σ(x , y) =

(

G(x , y)

K

)

where
G(x , y) = max |f

′′

θ
(x , y)| θ ∈ [0, 2π]

and K is a normalizing constant

• Halftone the feature image σ(x , y) to
obtain a binary image

• Input the locations of the white pixels in
the binary image as initial grid nodes to
a Delaunay grid generation algorithm

• Refine the grid generated from the
above step to obtain the final image
adapted non-uniform grid
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Proposed FEM-based Non-Rigid Registration (3)

Results

TargetSour
e

Registered (FD)
Registered (FEM)

Contours before regis.

Contours after regis. (FD)
Contours after regis. (FEM)

• D(x) = 0.1 in the ventricle region and D(x) = 0.5 in the rest of the brain
• 13.07 sec (FEM), 57.06 sec (FD)
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Proposed FEM-based Non-Rigid Registration (4)

Results

TargetSour
e

Registered (FD)
Registered (FEM)

Contours before regis.

Contours after regis. (FD)
Contours after regis. (FEM)

• D(x) = 0.01 in the ventricle region and to D(x) = 0.1 in the rest of the brain

• 21.31 sec (FEM), 112.66 sec (FD)
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Proposed FEM-based Non-Rigid Registration (5)

Results

Sour
e Target Contours before regis.
Registered (FD) Contours after regis. (FD)

Contours after regis. (FEM)Registered (FEM)
• 65.59 sec (FEM), 303.72 sec (FD)
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Proposed FEM-based Non-Rigid Registration (6)

Conclusions and Future work

• A fast Finite Element Method based non-rigid registration method that
employed a grid with variable resolution was presented

• Only 2D images were considered in this paper, it can be easily extended to
3D images

• We intend to explore the possibility of learning the stiffness field D(x) from
a set of training images.
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