3D Structure and Motion from 2D Motion

Adel H. Fakih

afakih@engmail.uwaterloo.ca

May 25, 2009

1 / 23

Adel H. Fakih Structure from Motion May 25, 2009

Outline

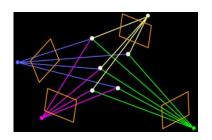
- Introduction
- Structure from Motion Constraints
- Instantaneous Constraint Approaches
- Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- Factorization Methods

Outline

- Introduction
- 2 Structure from Motion Constraints
- 3 Instantaneous Constraint Approaches
- 4 Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- Factorization Methods

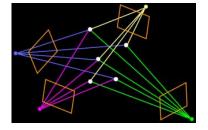
The Structure from Motion Problem

- Input:
 - \longrightarrow Image projection: \overrightarrow{x}_i
- Output:
 - \longrightarrow Camera motion: R, \overrightarrow{T} , $\overrightarrow{\omega}$, \overrightarrow{V}
 - → Structure: Positions of a set of N 3D points X_i



The Structure from Motion Problem

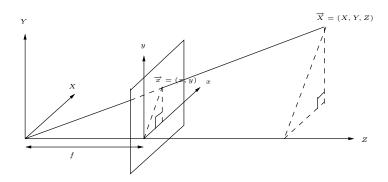
- Input:
 - \longrightarrow Image projection: \overrightarrow{x}_i
- Output:
 - \longrightarrow Camera motion: R, \overrightarrow{T} , $\overrightarrow{\omega}$, \overrightarrow{V}
 - → Structure: Positions of a set of N 3D points X_i



- Optimal solution: Minimizes the reprojection error in all the images
 - → Known as Bundle Adjustment
 - → Needs to be done offline
 - --- Computationally expensive

Adel H. Fakih Structure from Motion May 25, 2009 3 / 23

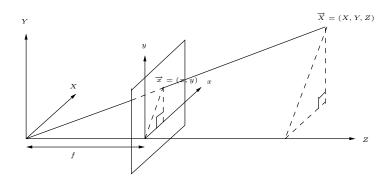
Perspective projection



$$\left[\begin{array}{c} x \\ y \end{array}\right] = K \left[\begin{array}{c} \frac{X}{Z} \\ \frac{Y}{Z} \end{array}\right]$$

Adel H. Fakih Structure from Motion May 25, 2009 4 / 23

Perspective projection



$$\left[\begin{array}{c} x \\ y \end{array}\right] = K \left[\begin{array}{c} \frac{X}{Z} \\ \frac{Y}{Z} \end{array}\right] \qquad K = \left[\begin{array}{ccc} f_1 & \alpha_c f_1 & c_1 \\ 0 & f_2 & c_2 \\ 0 & 0 & 1 \end{array}\right]$$

May 25, 2009 Adel H. Fakih Structure from Motion 4 / 23

Outline

- Introduction
- 2 Structure from Motion Constraints
- 3 Instantaneous Constraint Approaches
- 4 Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- 5 Factorization Methods

SFM Constraints

• Image projections are the result of the camera pose and the 3D positions of the points

Adel H. Fakih Structure from Motion May 25, 2009 5 / 23

SFM Constraints

- Image projections are the result of the camera pose and the 3D positions of the points
- Matching Constraints:
 - → Link 3D parameters to image projections
 - Equation of motion of rigid bodies + projection equation

Adel H. Fakih Structure from Motion May 25, 2009 5 / 23

SFM Constraints

- Image projections are the result of the camera pose and the 3D positions of the points
- Matching Constraints:
 - → Link 3D parameters to image projections
 - Equation of motion of rigid bodies + projection equation

	3D motion	Projection	SFM constraint
Discrete	$\overrightarrow{X}_c = R\overrightarrow{X} + \overrightarrow{T}$	$x_c = \frac{X_c}{Z_c}$	$\overrightarrow{x}_c = \frac{[R\overrightarrow{X} + \overrightarrow{T}]_{1,2}}{[R\overrightarrow{X} + \overrightarrow{T}]_3}$
Instantaneous	$\frac{d\overrightarrow{X}_c}{dt} =$	$y_c = \frac{Y_c}{Z_c}$	$\dot{\vec{x}}_c(t) =$
	$\overrightarrow{w} \times \overrightarrow{X}_c + \overrightarrow{V}$		$\left \frac{A(\overrightarrow{x}_c)\overrightarrow{V}}{Z_c} - B(\overrightarrow{x_c})\overrightarrow{\omega} \right $

$$A(\overrightarrow{x}_c) = \begin{bmatrix} 1 & 0 & -x_c \\ 0 & 1 & -y_c \end{bmatrix} \quad B(\overrightarrow{x}_c) = \begin{bmatrix} -x_c y_c & 1 + x_c^2 & -y_c \\ -1 - y_c^2 & x_c y_c & y_c \end{bmatrix}^{\text{inversity of }}$$

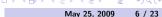
Adel H. Fakih Structure from Motion May 25, 2009 5 / 23

Outline

- Introduction
- 2 Structure from Motion Constraints
- 3 Instantaneous Constraint Approaches
- 4 Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- 5 Factorization Methods

Algebraic manipulation

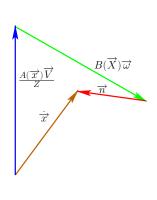
$$\overrightarrow{V}^T(\overrightarrow{x}\times\dot{\overrightarrow{x}})+(\overrightarrow{V}\times\overrightarrow{x})(\overrightarrow{x}\times\overrightarrow{\omega})=0$$



Algebraic manipulation

$$\overrightarrow{V}^T(\overrightarrow{x}\times \dot{\overrightarrow{x}}) + (\overrightarrow{V}\times \overrightarrow{x})(\overrightarrow{x}\times \overrightarrow{\omega}) = 0$$

Geometrical perspective



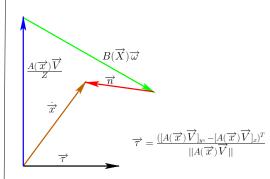
Adel H. Fakih

May 25, 2009 Structure from Motion

Algebraic manipulation

$$\overrightarrow{V}^T(\overrightarrow{x}\times \dot{\overrightarrow{x}}) + (\overrightarrow{V}\times \overrightarrow{x})(\overrightarrow{x}\times \overrightarrow{\omega}) = 0$$

Geometrical perspective



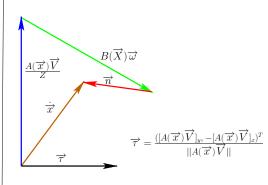
6 / 23

Adel H. Fakih Structure from Motion May 25, 2009

Algebraic manipulation

$$\overrightarrow{V}^T(\overrightarrow{x}\times\dot{\overrightarrow{x}})+(\overrightarrow{V}\times\overrightarrow{x})(\overrightarrow{x}\times\overrightarrow{\omega})=0$$

Geometrical perspective



$$\overrightarrow{\tau}^T(\dot{\overrightarrow{x}} - B(\overrightarrow{X})\overrightarrow{\omega}) = 0$$

Structure from Motion May 25, 2009 6 / 23

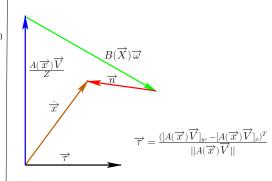
Adel H. Fakih

Algebraic manipulation

$$\overrightarrow{\overrightarrow{V}}^T(\overrightarrow{x}\times \dot{\overrightarrow{x}}) + (\overrightarrow{V}\times \overrightarrow{x})(\overrightarrow{x}\times \overrightarrow{\omega}) = 0$$

$$||A(\overrightarrow{x})\overrightarrow{V}||\overrightarrow{\tau}^T(\dot{\overrightarrow{x}}-B(\overrightarrow{X})\overrightarrow{\omega})=0$$

Geometrical perspective



$$\overrightarrow{\tau}^T(\overrightarrow{x} - B(\overrightarrow{X})\overrightarrow{\omega}) = 0$$

May 25, 2009

Approaches Using the Weighted Constraint

- Bruss and Horn
 - \longrightarrow a least-squares estimate of $\overrightarrow{\omega}$ is obtained as a function of \overrightarrow{V}
 - \longrightarrow Substitute $\overrightarrow{\omega}$ back into the bilinear constraints
 - \longrightarrow Minimize the obtained non-linear constraint subject to $|\overrightarrow{V}|=1$

Approaches Using the Weighted Constraint

- Bruss and Horn
 - \longrightarrow a least-squares estimate of $\overrightarrow{\omega}$ is obtained as a function of \overrightarrow{V}
 - \longrightarrow Substitute $\overrightarrow{\omega}$ back into the bilinear constraints
 - \longrightarrow Minimize the obtained non-linear constraint subject to $|V^{'}|=1$
- Linear Subspaces (Jepson and Heeger)
 - \longrightarrow Define vectors $\overrightarrow{\tau}_i = \sum_{k=1}^N c_{ik} [\overrightarrow{x}^k \times \overrightarrow{x}^k]$
 - $\longrightarrow \tau_i \overrightarrow{V} = \sum_{k=1}^N c_{ik} \overrightarrow{V} [\overrightarrow{x}^k \times [\overrightarrow{x}^k \times \overrightarrow{\omega}]]$
 - Choose the \overrightarrow{c}_i vectors to be perpendicular to all quadratic polynomials on image plane
 - $\longrightarrow \overrightarrow{\tau}_i \overrightarrow{V} = 0$
 - \longrightarrow Solution: Smallest eigenvalue of $\sum \overrightarrow{\tau}_i \overrightarrow{\tau}_i^T$

Adel H. Fakih Structure from Motion May 25, 2009 7 / 23

Approaches Using the Un-weighted Constraint

- Zhang and Tomasi:
 - $\longrightarrow \text{ Gauss-Newton minimization of } \sum (\dot{\overrightarrow{x}} \frac{A(\overrightarrow{x}_c)\overrightarrow{V}}{Z_c} B(\overrightarrow{x_c})\overrightarrow{\omega})^2$
 - → At each step:
 - Determine \overrightarrow{V} , $\overrightarrow{\omega}$, and Z for every point
 - Re-determine $\overrightarrow{\omega}$ from the unweighted constraint using \overrightarrow{V}
 - Re-determine the Z from the full instantaneous constraint
 - Initialize from 15 different locations to avoid local-minima

8 / 23

Adel H. Fakih Structure from Motion May 25, 2009

Approaches Using the Un-weighted Constraint

- Zhang and Tomasi:
 - \longrightarrow Gauss-Newton minimization of $\sum (\dot{\overrightarrow{x}} \frac{A(\overrightarrow{x}_c)\overrightarrow{V}}{Z_c} B(\overrightarrow{x_c})\overrightarrow{\omega})^2$
 - → At each step:
 - Determine \overrightarrow{V} , $\overrightarrow{\omega}$, and Z for every point
 - Re-determine $\overrightarrow{\omega}$ from the unweighted constraint using \overrightarrow{V}
 - Re-determine the Z from the full instantaneous constraint
 - → Initialize from 15 different locations to avoid local-minima
- Pauwels and Van-Hulle:
 - \longrightarrow Minimizes $(||A(\overrightarrow{x})\overrightarrow{V}||^{(1-\rho)}\overrightarrow{\tau}^T(\dot{\overrightarrow{x}}-B(\overrightarrow{x})\overrightarrow{\omega}))^2$
 - $\longrightarrow \rho = 0 \Rightarrow \text{weighted}$
 - $\longrightarrow \rho = 1 \Rightarrow \text{unweighted}$

8 / 23

Adel H. Fakih Structure from Motion May 25, 2009

Outline

- Introduction
- 2 Structure from Motion Constraints
- 3 Instantaneous Constraint Approaches
- Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- Factorization Methods

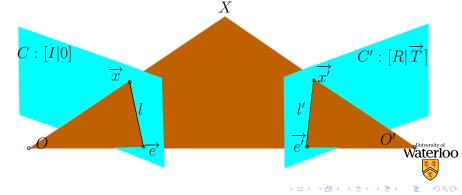
Two Views

•
$$\overrightarrow{x'}^T [\overrightarrow{T}]_{\times} R \overrightarrow{x} = 0$$

•
$$E = [\overrightarrow{T}]_{\times} R$$

• E : Essential matrix

$$\begin{bmatrix} \overrightarrow{T} \end{bmatrix}_{\times} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$$



Adel H. Fakih Struc

Structure from Motion

May 25, 2009

Essential Matrix

- $E\overrightarrow{e}=0$ and $\overrightarrow{e'}E=0$
- \bullet E is singular
- ullet E has two equal non-zero singular values

•
$$SVD : E = UWV^T$$

$$\longrightarrow W = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow V \ U \in SO_2$$

Adel H. Fakih Structure from Motion May 25, 2009 10 / 23

Essential Matrix Determination

$$(x', y', 1) \begin{pmatrix} (E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

$$(x,y,1) \begin{pmatrix} E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix} = 0$$

$$(xx',xy',x,yx',yy',y,x',y') \begin{pmatrix} E_{11} \\ E_{12} \\ E_{13} \\ E_{21} \\ E_{22} \\ E_{23} \\ E_{31} \\ E_{32} \end{pmatrix} = -1$$
Whinimize
$$\sum_{n} (\overrightarrow{x}^T E \overrightarrow{x}')^2$$
subject to $||E|| = 1$
Waterlo

Adel H. Fakih Structure from Motion May 25, 2009 11 / 23

Combine

$$EE^TE - \frac{1}{2}trace(EE^T)E = 0$$

with the 5 equations:

$$\overrightarrow{x_i'}^T E \overrightarrow{x_i} = 0, \ \forall i \in \{1...5\}$$

- \longrightarrow Get a 10^{th} order polynomial equation
- Gives up to 10 solutions

Structure from Motion May 25, 2009 12 / 23

Random Sample Consensus (RANSAC)

- Select 5 data items at random
- Estimate the correspondent essential matrix
- Find the number of inliers k
- If K is big enough, accept and exit.
- Repeat L times
- L is determined based on the expected number of outliers and the desired probability of success

Adel H. Fakih Structure from Motion May 25, 2009 13 / 23

Random Sample Consensus (RANSAC)

- Select 5 data items at random
- Estimate the correspondent essential matrix
- Find the number of inliers k
- If K is big enough, accept and exit.
- Repeat L times
- L is determined based on the expected number of outliers and the desired probability of success
- Preemptive Ransac techniques
 - → Breadth first

Adel H. Fakih Structure from Motion May 25, 2009 13 / 23

Motion from Essential Matrix

• SVD: $E = UWV^T$

Adel H. Fakih Structure from Motion May 25, 2009 14 / 23

Motion from Essential Matrix

- SVD: $E = UWV^T$
- Four possible solutions:

$$\longrightarrow [T_1]_{\times} = UR_z(\frac{\pi}{2})WU^T$$

$$\longrightarrow [T_2]_{\times} = UR_z(-\frac{\pi}{2})WU^T$$

$$\longrightarrow R_1 = UR_z(\frac{\pi}{2})V^T$$

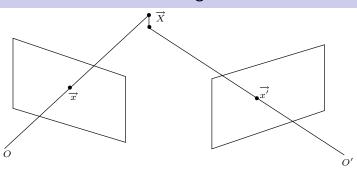
$$\longrightarrow R_2 = UR_z(-\frac{\pi}{2})V^T$$

$$\bullet \ R_z(\frac{\pi}{2}) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Structure from Motion May 25, 2009 14 / 23

Adel H. Fakih

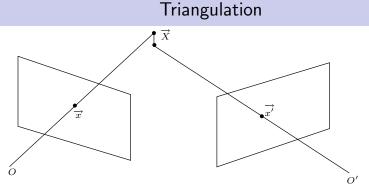
Triangulation



15 / 23

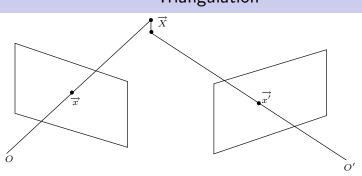
Structure from Motion May 25, 2009

Introduction Structure from Motion Constraints Instantaneous Constraint Approaches Discrete Constraint Approaches Facto



• Linear: From the projection equations get a system of the form: $A\overrightarrow{X} = 0$

Adel H. Fakih Structure from Motion May 25, 2009 15 / 23



- Linear: From the projection equations get a system of the form: $A\overrightarrow{X} = 0$
- \bullet Non-Linear: Iteratively find $\hat{\overrightarrow{X}}$ that minimizes $(\overrightarrow{x} - \hat{\overrightarrow{x}})^2 + (\overrightarrow{x'} - \hat{\overrightarrow{x'}})$

 \longrightarrow $\hat{\overrightarrow{x}}$ and $\hat{\overrightarrow{x'}}$ are the projections of $\hat{\overrightarrow{X}}$

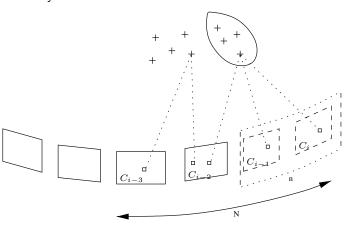
15 / 23

Adel H. Fakih Structure from Motion May 25, 2009

Local Bundle Adjustment

Royer and Lhuillier

Adel H. Fakih



16 / 23

May 25, 2009

Structure from Motion

Filter Based Approaches

Organize the time evolution of the 3D parameters as a dynamical system

State Equations

$$\left(\begin{array}{ccc} \overrightarrow{X}_i(t+1) & = & \overrightarrow{X}_i(t) \\ \overrightarrow{T}(t+1) & = & e^{\widehat{\overrightarrow{\omega}}(t)}\overrightarrow{T}(t) + \overrightarrow{V}(t) \\ R(t+1) & = & e^{\widehat{\overrightarrow{\omega}}(t)}R(t) \\ \overrightarrow{V}(t+1) & = & \overrightarrow{V}(t) + \overrightarrow{a}_V(t) \\ \overrightarrow{\omega}(t+1) & = & \overrightarrow{\omega}(t) + \overrightarrow{a}_\omega(t) \end{array} \right)$$

Measurement equations

$$\overrightarrow{x}_i(t) = \Pi(R(t)\overrightarrow{X}_i(t) + \overrightarrow{T}(t))$$

Adel H. Fakih Structure from Motion May 25, 2009 17 / 23

Filter Based Approaches

 Organize the time evolution of the 3D parameters as a dynamical system

State Equations

Measurement equations

$$\overrightarrow{x}_i(t) = \Pi(R(t)\overrightarrow{X}_i(t) + \overrightarrow{T}(t))$$

Can be solved using an Extended Kalman Filter

Adel H. Fakih Structure from Motion May 25, 2009 17 / 23

Filter Based Approaches

 Organize the time evolution of the 3D parameters as a dynamical system

State Equations

Measurement equations

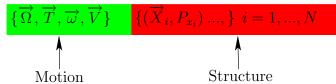
$$\overrightarrow{x}_i(t) = \Pi(R(t)\overrightarrow{X}_i(t) + \overrightarrow{T}(t))$$

- Can be solved using an Extended Kalman Filter
 - Waterloo Problem: Dimensionality explosion (quadratic in the number of features)

17 / 23

Adel H. Fakih Structure from Motion

- Particle filtering based
- Splits the state vector into two parts
 - → Motion: estimated using particle filtering
 - Structure: The 3D points in every particle are estimated analytically conditioned on the motion in the sample



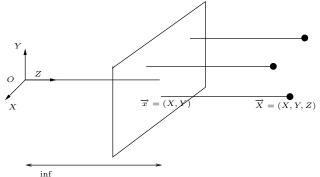
Adel H. Fakih Structure from Motion May 25, 2009 18 / 23

Outline

- Introduction
- 2 Structure from Motion Constraints
- 3 Instantaneous Constraint Approaches
- 4 Discrete Constraint Approaches
 - Two Views
 - Extension to Multiple Frames
- **5** Factorization Methods

Tomasi-Kanade Factorization (1)

Applies to orthographic projections



$$\longrightarrow \text{ Constraint } : \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} [R\overrightarrow{X} + \overrightarrow{T}]_x \\ R\overrightarrow{X} + \overrightarrow{T}]_y \end{array} \right] = A\overrightarrow{X} + \overrightarrow{b}$$

 $A ext{ is } 2 imes 3 ext{ and } \overrightarrow{b} ext{ is } 2 imes 1$

Adel H. Fakih Structure from Motion May 25, 2009 19 / 23

Tomasi-Kanade Factorization (2)

- M cameras $(A_i, \overrightarrow{b}_i)$
- N points (\overrightarrow{X}_i)
- \overrightarrow{x}_{ij} : projection of \overrightarrow{X}_i on the j^{th} camera
- Take one of the points (or their center of mass) as the origin $\longrightarrow A_i \overrightarrow{X}_i + \overrightarrow{b}_i \Leftrightarrow A_i \overrightarrow{X}_i$
- Define D,P,A:

$$D \stackrel{\text{def}}{=} \left[\begin{array}{ccc} \overrightarrow{x}_{11} & \dots & \overrightarrow{x}_{N1} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \overrightarrow{x}_{1M} & \dots & \overrightarrow{x}_{NM} \end{array} \right] \qquad P \stackrel{\text{def}}{=} \left[\begin{array}{c} \overrightarrow{X}_1 & \dots & \overrightarrow{X}_N \end{array} \right] \\ A \stackrel{\text{def}}{=} \left[\begin{array}{c} \overrightarrow{X}_1 & \dots & \overrightarrow{X}_N \end{array} \right]$$

$$P \stackrel{\text{def}}{=} \begin{bmatrix} \overrightarrow{X}_1 & \dots & \overrightarrow{X}_N \\ A \stackrel{\text{def}}{=} \begin{bmatrix} A_1 \\ \vdots \\ A_M \end{bmatrix}$$

• $D = A \times P$ (D at most rank 3!)

Adel H. Fakih Structure from Motion May 25, 2009 20 / 23

- How to recover A and P from D
- SVD: $D = UWV^T$
- U is $2M \times 2M$, W is $2M \times N$ and V is $N \times N$
- W is diagonal with diagonal values $\lambda_1, ..., \lambda_{2M}$
- The best rank 3 approximation of D is

$$\left[\begin{array}{ccc} U_1 & U_2 & U_3 \end{array}\right] \left[\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array}\right] \left[\begin{array}{c} V_1^T \\ V_2^T \\ V_3^T \end{array}\right]$$

• Take $A = \begin{bmatrix} U_1 & U_2 & U_3 \end{bmatrix}$ and

$$P = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \\ V_3^T \end{bmatrix}$$

Adel H. Fakih Structure from Motion May 25, 2009 21 / 23

The Perspective Case

Adel H. Fakih Structure from Motion May 25, 2009 22 / 23

The Perspective Case

- Sturm and Triggs:
 - → Guess the depths
 - \longrightarrow Factorize D to get M and P
 - → Iterate

Adel H. Fakih Structure from Motion May 25, 2009 22 / 23

Thank you

Questions???

